2,903 research outputs found

    Robust fault detection for networked systems with communication delay and data missing

    Get PDF
    n this paper, the robust fault detection problem is investigated for a class of discrete-time networked systems with unknown input and multiple state delays. A novel measurement model is utilized to represent both the random measurement delays and the stochastic data missing phenomenon, which typically result from the limited capacity of the communication networks. The network status is assumed to vary in a Markovian fashion and its transition probability matrix is uncertain but resides in a known convex set of a polytopic type. The main purpose of this paper is to design a robust fault detection filter such that, for all unknown inputs, possible parameter uncertainties and incomplete measurements, the error between the residual signal and the fault signal is made as small as possible. By casting the addressed robust fault detection problem into an auxiliary robust H∞ filtering problem of a certain Markovian jumping system, a sufficient condition for the existence of the desired robust fault detection filter is established in terms of linear matrix inequalities. A numerical example is provided to illustrate the effectiveness and applicability of the proposed technique

    Semiclassical Quantization for the Spherically Symmetric Systems under an Aharonov-Bohm magnetic flux

    Full text link
    The semiclassical quantization rule is derived for a system with a spherically symmetric potential V(r)rνV(r) \sim r^{\nu} (2<ν<)(-2<\nu <\infty) and an Aharonov-Bohm magnetic flux. Numerical results are presented and compared with known results for models with ν=1,0,2,\nu = -1,0,2,\infty. It is shown that the results provided by our method are in good agreement with previous results. One expects that the semiclassical quantization rule shown in this paper will provide a good approximation for all principle quantum number even the rule is derived in the large principal quantum number limit n1n \gg 1. We also discuss the power parameter ν\nu dependence of the energy spectra pattern in this paper.Comment: 13 pages, 4 figures, some typos correcte

    Can surface flux transport account for the weak polar field in cycle 23?

    Full text link
    To reproduce the weak magnetic field on the polar caps of the Sun observed during the declining phase of cycle 23 poses a challenge to surface flux transport models since this cycle has not been particularly weak. We use a well-calibrated model to evaluate the parameter changes required to obtain simulated polar fields and open flux that are consistent with the observations. We find that the low polar field of cycle 23 could be reproduced by an increase of the meridional flow by 55% in the last cycle. Alternatively, a decrease of the mean tilt angle of sunspot groups by 28% would also lead to a similarly low polar field, but cause a delay of the polar field reversals by 1.5 years in comparison to the observations.Comment: 9 pages, 8 figures, Space Science Reviews, accepte

    PP-waves from BPS supergravity monopoles

    Get PDF
    We discuss the Penrose limit of the Chamseddine-Volkov BPS selfgravitating monopole in four dimensional N=4 supergravity theory with non-abelian gauge multiplets. We analyze the properties of the resulting supersymmetric pp-wave solutions when various Penrose limits are considered. Apart from the usual rescaling of coordinates and fields we find that a rescaling of the gauge coupling constant to zero is required, rendering the theory abelian. We also study the Killing spinor equations showing an enhancement of the supersymmetries preserved by the solutions and discuss the embedding of the pp-wave solution in d=10d=10 dimensions.Comment: 14 pages, no figures. Minor changes, to appear in Phys. Lett.

    ZnZ_n elliptic Gaudin model with open boundaries

    Full text link
    The ZnZ_n elliptic Gaudin model with integrable boundaries specified by generic non-diagonal K-matrices with n+1n+1 free boundary parameters is studied. The commuting families of Gaudin operators are diagonalized by the algebraic Bethe ansatz method. The eigenvalues and the corresponding Bethe ansatz equations are obtained.Comment: 21 pages, Latex fil

    Spinning U(1) gauged Skyrmions

    Get PDF
    We construct axially symmetric solutions of U(1) gauged Skyrme model. Possessing a nonvanishing magnetic moment, these solitons have also a nonzero angular momentum proportional to the electric charge.Comment: v2: 7 pages, 4 eps figures; some clarifications and references added on the existence of solutions; typos correcte

    Magnetization and Level Statistics at Quantum Hall Liquid-Insulator Transition in the Lattice Model

    Full text link
    Statistics of level spacing and magnetization are studied for the phase diagram of the integer quantum Hall effect in a 2D finite lattice model with Anderson disorder.Comment: 4 pages, 6 figure

    A higher order control volume based finite element method to prodict the deformation of heterogeneous materials

    Get PDF
    Materials with obvious internal structure can exhibit behaviour, under loading, that cannot be described by classical elasticity. It is therefore important to develop computational tools incorporating appropriate constitutive theories that can capture their unconventional behaviour. One such theory is micropolar elasticity. This paper presents a linear strain control volume finite element formulation incorporating micropolar elasticity. Verification results from a micropolar element patch test as well as convergence results for a stress concentration problem are included. The element will be shown to pass the patch test and also exhibit accuracy that is at least equivalent to its finite element counterpart

    The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta

    Get PDF
    Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities.115Ysciescopu

    Numerical Test of Disk Trial Wave function for Half-Filled Landau Level

    Full text link
    The analyticity of the lowest Landau level wave functions and the relation between filling factor and the total angular momentum severely limits the possible forms of trial wave functions of a disk of electrons subject to a strong perpendicular magnetic field. For N, the number of electrons, up to 12 we have tested these disk trial wave functions for the half filled Landau level using Monte Carlo and exact diagonalization methods. The agreement between the results for the occupation numbers and ground state energies obtained from these two methods is excellent. We have also compared the profile of the occupation number near the edge with that obtained from a field-theoretical method. The results give qualitatively identical edge profiles. Experimental consequences are briefly discussed.Comment: To be published in Phys. Rev. B. 9 pages, 6 figure
    corecore